lasso_2_scalar_forecast.Rd
Obtain scalar forecast from lasso model
lasso_2_scalar_forecast( model, h = 1, target = "value", model_sample, s = c("lambda.min", "lambda.1se") )
model | estimated lasso model |
---|---|
h | forecasting horizon |
target | name of the target variable |
model_sample | non-augmented data set for model estimation |
s | criterion to select best regularization lambda in lasso |
scalar forecast for given h
Obtain scalar forecast from lasso model. The function automatically augments data with lags, fourier terms, trend etc.
test_ts = stats::ts(rnorm(100), start = c(2000, 1), freq = 12) test_tsibble = tsibble::as_tsibble(test_ts) model = lasso_fun(test_tsibble, h = 1) lasso_2_scalar_forecast(model, h = 1, model_sample = test_tsibble)#> 1 #> [1,] 0.1157456